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The stability or instability of various linear shear flows in shallow water is considered. 
The linearized equations for waves on the surface of each flow are solved exactly in 
terms of known special functions. For unbounded shear flows, the exact reflection 
and transmission coefficients R and T for waves incident on the flow, are found. 
They are shown to satisfy the relation JR12 = 1 + /TI2, which proves that over- 
reflection occurs at all wavenumbers. For flow bounded by a rigid wall, R is 
found. The poles of R yield the eigenvalue equation from which the unstable 
modes can be found. For flow in a channel, with two rigid walls, the eigenvalue 
equation for the modes is obtained. The results are compared with previous numerical 
results. 

1. Introduction 
A shear flow in the x-direction with any velocity profile U ( y )  is a possible 

steady motion in shallow water of constant depth. Its stability can be deter- 
mined from the dispersion equation for small-amplitude surface waves superposed 
upon it, or equivalently from the coefficients of reflection and transmission of such 
waves by the flow. These waves also represent the stable and unstable modes 
of oscillation of the flow. In the special case of linear shear flow of bounded 
or unbounded extent, the instability was investigated by Satomura (1981a,b) and 
by Takehiro & Hayashi (1992). The latter authors also considered reflection by 
the flow and showed that over-reflection occurred. Both of these investigations 
were based upon numerical solution of the governing ordinary differential equa- 
tion. 

We shall solve the problems of stability and reflection for linear shear flows 
analytically by solving the governing ordinary differential equation exactly in terms 
of known special functions. From the solution we shall obtain the dispersion equation 
and the reflection and transmission coefficients. The virtue of the solution is that it 
yields exact results for all parameter values. Therefore it can be used as a check on 
numerical and asymptotic methods, and it extends them beyond the parameter ranges 
which they cover. 

One could also solve these problems by asymptotic methods for waves short 
compared to the width of the shear flow. The value of the asymptotic method is that 
it can be applied to any current profile U ( y ) ,  and it is valid for small wavelengths, 
which cannot be treated numerically. We have used this method previously (Knessl 
& Keller 1992) to treat the instability of a shear flow on a rotating sphere in the 
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equatorial fi-plane approximation. It verified and extended the previous numerical 
results of Griffiths, Killworth & Stern (1982) and Hayashi & Young (1987). We had 
intended to use the asymptotic method on linear shear flows before we found the 
exact solution. 

2. Formulation 
Let a small-amplitude surface wave of height Re[h(y)e-ik(x-ct)], with k > 0, 

be superposed on a shear flow with velocity U(y) in the x-direction in shal- 
low water of constant depth. Here y is a transverse horizontal coordinate, and 
not the vertical coordinate, as in some early studies of flows with vertical shear. 
Then h(y) satisfies the following dimensionless ordinary differential equation, in 
which F is the Froude number based upon the undisturbed depth (Satomura 
1981a): 

(2.1) 
For the linear shear flow U(y) = y ,  (2.1) is 

(2.2) 

5 = kF(Y - c)2,  M Y )  = H(5) .  (2.3) 

h” - 2U’(U - c)-’h’ + k2[F2(U - c)* - l]h = 0. 

h” - 2(y - c)-’h’ + k2[F2(y - c)’ - l]h = 0. 

To simplify (2.2) we introduce the new variables < and H ( t )  defined by 

Then (2.2) becomes 

We can transform this equation into a standard form by writing 

5 = iq, H ( 5 )  = 51/4G(iq). (2.5) 

Then from (2.4) and (2.5) we get 

------ )G=O. 1 ik 5 
4 4Fq 16q2 

Equation (2.6) is Whittaker’s equation (Abramowitz & Stegun 1970, p. 505, eq. 13.1.31) 
with K = -ik/4F and p = $-3/4. 

The general solution of (2.6) can be written in terms of Kummer’s function M ( i  + 
p - K ,  1 + 2p, q )  (Abramowitz & Stegun, eqs. 13.1.2, 13.1.32) with arbitrary constants 
2 and B :  

Upon using (2.7) in (2.5) we obtain H(<) ,  which by (2.3) is equal to h(y). Thus we 
have, with new constants A and B, 

5 ik 5 
h(y) = H ( < )  = A<3/2ei5/2M 

(2.8) 
This is the exact general solution of (2.2). 
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3. Reflection and transmission coefficients for an unbounded flow 
We shall now use (2.8) to determine the reflection and transmission coefficients R 

and T for a wave incident from y = -03, when the shear flow extends from y = -a 
to y = +03. To do so we must consider the asymptotic forms of h ( y )  as y tends to _+a. 
From (2.3) we see that as y -+ +co it follows that 5 -+ +GO, since k and F are positive. 
Therefore arg(-it) = -n/2. Similarly, as y -+ -03, we see that 5 -+ (+co)e2"' and 
therefore arg(-it) = 3n/2. For these two values of arg(-it) the asymptotic forms of 
M are given by eq. 13.5.1 on p. 508 of Abramowitz & Stegun (1970). We use the 
leading term for M to obtain 

M y )  = H ( 5 )  
eit:/2e-in/2(5/4+ik/4F)t1/4-ik/4F e-it/2ein/2(5/4-ik/4F) + r (i - i k / 4 ~ )  I - +AT (5) 

eit/2e-in/2(-l/4+ik/4F)ll/4-ik/4F e-i5/2eix/2(-l/4-ik/4F)<l/4+ik/4F 

r(-i + i k / 4 ~ )  
+ r(-f - ik/4F) 

y -+ +m. (3.1) 

These two asymptotic forms of h(y)  differ only in the sign in front of A. 
We note that h ( y )  is the sum of two waves with phases +-/2 = fkF(y - ~ ) ~ / 2 .  We 

have written the solution with the time factor e+ikct. Therefore the outgoing waves 
are the ones for which the phase decreases as ly - cJ increases, i.e. the ones with 
phase -5/2 at both 203. The waves with phase +5/2 are incoming. When a wave is 
incident from y = -03 and no wave is incident from y = +03, the coefficient of the 
incoming wave ei(I2 must vanish as y -+ +a. By setting this coefficient equal to zero 
in (3.1) with the upper sign, which holds as y -+ +GO, we obtain 

+BT (-4) 

We can use (3.2) to write A in terms of B. 
The reflection coefficient R is defined to be the ratio of the amplitude of the 

outgoing or reflected wave e-"l2 at y = -03 to the amplitude of the incoming or 
incident wave eirl2 at y = -03. These two coefficients are contained in (3.1) at 
y = -03, and they give 

+ r ( i  -ik/4F) r(-f -ik/4F) 
R =  - - . (3.3) 

-AT (5 )e5ni/8 ~r (- $ )e-in/8 .r(i - ik/4F) r(-f - ik/4F) 
r( i  + i k / 4 ~ )  + r(-f + i k / 4 ~ )  r( i  + i k / 4 ~ )  r(-f  + i k / 4 ~ )  

-AT ( 5  )e-5ni/8 ~r (- 4 )ein/8 
2ein~4 

2 

-1 + 
The last expression in (3.3) is obtained by using (3.2) to eliminate A / B .  Next we 
simplify the last denominator in (3.3) by using the relation [ r ( z ) T ( l  - 2)I-l = 
n-' sin nz, and we obtain 

To rewrite R in a more useful form we first set K = k/4F. Then we can write 
the denominator in (3.4) as follows, using eq. 6.1.32 on p. 256 of Abramowitz & 
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r ( $  -x)r(i +K) r ( 5  - X) r (-a - X) = ($ - iK) r (a  - X) 4 (-a - iK) I-($ + iK) 
(3.51 

- - ( d  -iK)r($ -x) 4 
(-a-iK)T($ +iK)coshnK +is inhnK’ 

By using (3.5) in (3.4) and simplifying, we get 

R = (1 - ie-nk/2F)e-in/4 ( - l + i k / F )  exp [ -2iargr (1 - + - i k ) ]  . (3.6) 1 + ik/F 4 4 F  

From (3.6) we find that 

Furthermore, for k / F  >> 1, we use the asymptotic expansion of r ( $  + ik/4F) in (3.6) 
to get 

(RI2 = 1 + e-*k/F. (3.7) 

k k k n  k 
2F 4F 2F 2 F 

argR = -In- - - - - + O  (I), - >> 1. 

Thus IRI2 > 1, so over-reflection occurs for all values of k. Next we calculate the 
transmission coefficient T ,  which is the amplitude of the outgoing wave e-ic/2 at 
y = +co divided by the amplitude of the incoming wave eic/2 at y = -a From (3.1) 
we have 

Br(-L)e-i*/8 AT (i)e5ni/8 
2 

r(-$ + ik/4F) + r ($  +ik/4F) 

r(-i + ik/4F) ‘ ( i  + ik/4F)’ 

T =  (3.9) B r  (- +)e-’n/S AT ($)@i/8 
- 

By using (3.2) in (3.9) and simplifying the result, we obtain 

T = ie--xk/2F. (3.10) 

The phase of T is just n/2 and (TI2 is given by 

1 ~ 1 2  = e - n k / F .  (3.11) 

From (3.7) and (3.11) we get 

(RI2 - (TI2 = 1. (3.12) 

This result can be proved directly from (2.2) by means of Green’s theorem, as is 
shown in the Appendix. Graphs of IRI2 and ITI2 as functions of k / F  are shown in 
figure 1. The numerical results of Takehiro & Hayashi (1992), given in their figure 7, 
are in very good agreement with these exact results. 

The results (3.4) and (3.10) were derived on the assumption that k is real and 
positive, since this assumption was used in deriving (3.1) and in determining the 
incoming and outgoing waves. However these results express R and T as analytic 
functions of k ,  so they can be extended analytically into the whole complex k-plane. 
They show that both R and T are entire functions of k / F  and are independent of 
c. Therefore there are no discrete modes, since the corresponding eigenvalues would 
be poles of R or T with respect to k or c. Consequently, the unbounded linear shear 
flow is linearly stable. 
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FIGURE 1. Reflection and transmission coefficients for waves incident on an unbounded linear shear 
flow as functions of the wavenumber k divided by the Froude number F.  The ordinate shows 
IRI2 = 1 +e-nk/F and [TI2 = ecnkIF, and the abscissa is k / F .  Note that IRI2 = 1 + IT/’, that IRl2 = 2 
at k / F  = 0 and IRI2 = 1 at k / F  = co. 

4. Modes of a shear flow bounded by a wall 
Now we shall consider the reflection of a wave from the same linear shear flow as 

in the previous section, but confined to the region y < yb with a rigid wall at y = yb. 
The condition that the velocity normal to the wall must vanish leads to the boundary 
condition 

The solution of (2.2) for h ( y )  is still given by (2.8) for y < yb, and (4.1) yields the 
following relation between the constants A and B at t = 5 6  = kF(yb - c ) ~ :  

h’(yb) = 0. (4.1) 

Here and below the subscript 5 6  denotes differentiation with respect to t b .  We can 
satisfy (4.2) by setting A = C times the coefficient of B in (4.2), and setting B = -C 
times the coefficient of A in (4.2), where C is an arbitrary constant. Then we can 
write the solution (2.8) for h ( y )  as follows: 

To determine the reflection coefficient R(yb) when a wave is incident from y = -a, 
we use the asymptotic form of h ( y )  for y 4 -a. That asymptotic form is expressed 
by (3.1) with the appropriate values of A and B,  which are contained in (4.3). 
From (3.1) we have shown that R(yb) is given by the first expression in (3.3). 
Into that expression we substitute the ratio A / B  determined by (4.2) or (4.3) and 
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1" I 
I r(-i - ik/4F) 

{ eitbI2M(-i + ik/4F, -+, -itb)} r (  $)e5ni/8 

r ( i  + ik/4F) 
t b  

In the Appendix, we prove from the differential equation (2.2) that for c real, 

IR(yh)I2 = 1 , c real. (4.5) 

This shows, as we expect, that the wave is completely reflected. This result can also 
be proved from (4.4). 

The eigenvalues of c are the poles of R, which cannot be real as (4.5) shows. Since 
the numerator in (4.4) is finite for all values of k, F ,  and tb, the only poles are the zeros 
of the denominator. By setting the demoninator equal to zero we get an eigenvalue 
equation for c. We shall solve it when t b  >> 1. First we use in it the asymptotic form 
of M for 5 6  large. This is the same expansion which was used in (3.1) for y large and 
positive. Then we can write the equation 'denominator of (4.4) = 0' in the asymptotic 
form 

Here c1 is defined by 
e37ti/4 e-3rti/4 

a =  + r(-i - ik/4F)r( i  + ik/4F) r(-$ + ik /4F)r ( i  - ik/4F) 

(4.7) = n-lenk/4F 

We have simplified (4.7) by using the relation just above (3.4). 

equation 
Now we use (4.7) in (4.6) and rearrange the resulting equation to get the eigenvalue 

The right-hand side of (4.8) is exactly the complex conjugate of R given by (3.4). It is 
the reflection coefficient for a wave incident from y = +oo upon an unbounded linear 
shear flow. Taking logarithms of both sides of (4.8) yields, with II an integer, 

ik 
2F 

it6 - -log&, = log JRJ - iargR + 2nni. (4.9) 
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w e  now set c = Cr i- ici and then r b  = kF(yb - Cr - ici)2 = kF(yb - c , ) ~  - kFcZ - 
2ikFCi(yb - c,). We use this in (4.9), retain only the largest terms assuming that ci is 
small, and separate real and imaginary parts to get 

kc ,  = kyb +_ [kF-'(2nn - arg R) + ( k2 /2F2) log  kF(yb - c , ) ' ] ' '~ ,  (4.10) 

(4.11) 

In (4.11) we have used (3.7) for IRI. To obtain argR, which occurs in (4.10), we can 
use (3.6), or if k / F  >> 1 we can use (3.8). 

Equations (4.10) and (4.11) yield an infinite sequence of complex eigenvalues of c 
indexed by the integer n. Equation (4.10) yields both a positive value and a negative 
value of yb - cr for each n. When the positive value is used in (4.11) it yields a positive 
value of ci, which corresponds to an unstable mode. Thus there are both a stable and 
an unstable mode for each n. 

Equation (4.11) is of the same form as the 'laser formula' given by Lindzen (1988) 
in which F(yb - cr) is replaced by z, the time required for a wave to travel from the 
wall at y = yb to the turning point at y = F-'. That formula was used by Takehiro 
& Hayashi (1992, equation 44). They obtained R from their numerical calculations 
for a wave incident upon the unbounded linear shear flow, and they used the group 
velocity to calculate z. 

5. Modes of a shear flow between a wall and fluid at rest 

Yb and a state of rest in the region y d 0. Thus we assume that 
We next consider a h e a r  shear flow in the finite interval 0 d y < yb with a wall at 

u ( y )  = y ,  0 d y d yb ; v ( y )  = 0, y d 0 . (5.1) 

Then h ( y )  still satisfies (2.2) in the interval 0 d y ,< yb with the boundary and 
continuity conditions 

h'(yb) = 0 ;  h and h' continuous at y = 0 . (5.2) 

(5.3) 

In the region y c 0, (2.1) for h simplifies to 

h" + k2(F2c2 - l ) h  = 0, y < 0 . 

We require that Flc( > 1 so that waves of velocity c can propagate in the region 
y < 0. 

Now we assume that a wave of unit amplitude is incident on the shear flow from 
y = -co, and that it produces a reflected wave of amplitude R. Thus we write the 
solution of (5.3) for y < 0 as 

, y d 0 .  (5.4) h ( y )  = e-ik(~Zc2-1)'/2y + Reik(F2C2-l)'/'y 

In the shear flow region h ( y )  is given by (4.3), which satisfies the differential equation 
(2.2) and the boundary condition (5.2), i.e. h'(yb) = 0. To satisfy the two continuity 
conditions in (5.2), we can equate the values of h and h' given by (5.4) at y = 0 to the 
corresponding quantities given by (4.3). Instead we equate the two values of h' /h  at 
y = 0, since this eliminates the constant C which occurs in (4.3), and we obtain 
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Here N and D are given by 
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We have written 50 = kFc2 and <b = kF(yb - c ) ~ .  
Upon solving (5.5) for R we get the reflection coefficient 

-i(F2c2 - 1)'J2D + 2FcN 
-i(F2c2 - 1)'i2D - 2FcN * 

R =  

The proof in the Appendix can be adapted to show that 

JRJ = 1 for c real and FlcJ > 1 . (5.9) 

To find the eigenvalues of c, which are the poles of R, we note that the numerator 
of (5.8) is finite for c finite. Therefore, the poles are the zeros of the denominator 
of (5.8), which yields the eigenvalue equation 

- i(F2c2 - 1)'/'0 = 2FcN . (5.10) 

From (5.9) we see that there are no eigenvalues for real values of c with JcJ > F-l. 

We can simplify (5.10) when k and F are large, with yb and c fixed, by expanding 
N and D asymptotically. To do so, we employ the asymptotic expansions of M which 
are valid in a sector of the <-plane containing the positive real axis, since (5.8) was 
derived on the assumption that <O and <b are real and positive. When these expansions 
are used in (5.10) they yield the asymptotic form of the eigenvalue equation: 

-(F2c2 - 1)ll2 [(l + e-nk/F)1/2 sin(qb + qo) + sin(qb - qo)] 

= Fc [(l + e-nk/F)1/2 sin(qb + 90) - sin(qb - qO)] . (5.11) 

Here q~,qb and 19 are defined by 

1 k B 7 T  
qo = -50 - - logto + - - -, 2 4F 2 4  

1 k 8 7 T  
2 4F 2 4' 

q b  = -56 - -bg<b + - - - 
O = a r g r  [ (5 -+ -  ik )  r ( --+- 1 ik)] 

4 4F 4 4F 
k k k  k 

2F 4F 2F F 
=-log---+o((1) as --+a. 

This problem has been treated numerically by Satomura (1981a), Case 11). Therefore 
we shall not solve (5.11) numerically. 
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6. Modes of a bounded shear flow 
Finally we consider the modes of the shear flow U ( y )  = y in the finite interval 

y, < y < yb with rigid walls at y, and Yb. Then h ( y )  satisfies (2.2) in this interval with 
h'(y,) = 0 and h'(yb) = 0. The solution of (2.2) which satisfies h'(yb) = 0 is given by 
(4.3). Upon requiring that this solution satisfy h'(y,) = 0 we get the condition 

This equation determines the eigenvalues c. 
To simplify (6.1) we consider the case in which 5, and 5 6  are both large with 

y a  < 0 < yb. Since 56 = kF(yb - c ) ~  this means that 5 6  > o with arg(-i<b) = -n/2. 
Similarly ta = kF(y, - c ) ~  so 5, > 0 with argt,  = 27c so arg(-ita) = 3n/2. We 
now use the appropriate asymptotic expansions of M in (6.1). Then after a little 
rearrangement, we can write (6.1) in the asymptotic form 

2C + +  D ei(to+cb)/2(< a b  5 )-ik/4F + 2C_D_e-'(to+tb)/2 (5a4b)'k/4F 

Here C+ and D+ - are defined by 

c+ = 
r ( z)elrk/8FeT5ni/8 (-$)enk/gFe+in/8 

(6.3) D' = r(-i T ik/4F) . - f (i Tik/4F) ' 

We now use (6.3) in (6.2) and write the product of gamma functions in the form 

The phase 0 is defined by (5.14) and the amplitude A can be evaluated by using 
properties of the gamma function (Abramowitz & Stegun 1970, p. 256) with the 
result 

-1/2 

A = 2ll27c (cosh $) . 

Then we can write (6.2) as 

sin - - - log lh + ____ - - 
2 4 4F  7 

sin[$ - G l o g t a + - - - - -  k W / F )  "1 . ['; k 

log<, + ___ - - 
2 

(1 + e-nk/F)1/2 - 1 5, k - 
(1 + e-~k/F)1/2 + 1 'OS [ 2  - - - 4F - 

If k / F  >> 1, the right side of (6.6) is negligible and therefore either one of the 
sine functions must be zero. Thus we equate the argument of each sine to a positive 
integer multiple of 7t and use the asymptotic form of 8 ( k / F )  for k / F  >> 1. This yields 
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the eigenvalue equations 

-k(yb F - C)2 - - k log [(yb - c ) ~ F ~ ]  + F ( -- - - lo:’) = ( m + i ) z ,  m=0 ,1 ,  ... , 
2 4F 

Z ~ Y ,  F - C) 2 k  - - log [ (y ,  - c ) ~ F ~ ]  + (-i - y) = ( n  + i) n , n = 0,1, 4F 
(6.8) 

Equation (6.7) determines F2(yb - c ) ~  as a function of k / (m+ i ) F  and similarly (6.8) 
gives F2(y ,  - c ) ~  as a function of k/(n + $ ) F .  However, to show c as a function of k, 
we have chosen y ,  = 0 and y b  = 1, which entails no loss of generality. Then we have 
calculated c as a function of k for m = 0,1,2,3,4,5 from each equation for F = 5 
(figure 2a) and for F = 7 (figure 2b). These figures are similar to figures 3a and 4a 
of Satomura (1981~). Of course, they are not accurate for small values of k, since 
they are based on an asymptotic analysis for k large. Equations (6.7) and (6.8) show 
that Fly  - C I  - 1.1569 as k 00 where y = y ,  or y = yb .  This shows that the curves 
given by (6.7) with Yb = 1 have the asymptote c = 1 - 1.1569F-1 and the curves given 
by (6.8) with y, = 0 have the asymptote c = 1.1569F-’. 

The roots given by (6.7) and (6.8) are real. For each pair of values of n and m, 
both equations have the same root c for a certain value of k. Thus the curves c (k )  
given by (6.7) and (6.8) for the pair n,m intersect. Near the intersection points the 
exponentially small right-hand side of (6.6) must be taken into account, so that (6.7) 
and (6.8) do not hold there. Instead, there is a small interval of k around each 
intersection point within which the root c of (6.6) is complex. These intervals and the 
imaginary part of c within them can be found from (6.6), as in Knessl & Keller (1992). 
In each interval there are two roots, one with Im c > 0 and one with Im c < 0. Since 
the factor eikct grows exponentially when kIm c < 0, the shear flow is unstable to this 
perturbation. Some of these roots have been found numerically by Satomura (1981~). 

We thank Frank Zhifeng Zhang for his help with the figures. C. Knessl was 
supported in part by NSF grants DMS-88-57115, DMS-93-00136 and DOE grant 
DE-FG02-93ER25168. J.B. Keller was supported in part by the Air Force Office 
of Scientific Research, the Nathional Science Foundation, and the Office of Naval 
Research. 

Appendix. Derivation of lR(* - (TI2 = 1 and IR(yb)I2 = 1 
To derive (3.12) directly from (2.2) we set y = y* + c with c real, h*(y*)  = h(y ) ,  and 

omit the star. Then we multiply (2.2) by %, the complex conjugate of h, and write the 
result in the form 

- y-2hyEy + k2(F2  - yP2)hE = 0. (Al)  

Next we take the imaginary part of (Al), which comes only from the first term, and 
integrate it from yl to y2 to get 

(A2) 

In order to apply (A2) when y l  < 0 < y2, we must verify that $Imb-2h(y)h(y)] is 
integrable about y = 0. The power series method for y small shows that (2.2) has 

Im [ Y 3 ( Y l ) h Y ( Y d ]  = Im [Yi2E(Y2)hy(Y2)] * 
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FIGURE 2. The phase velocity c as a function of the wavenumber k for waves on a linear shear flow 
in a channel. The curves are based upon (6.7) and (6.8) with y, = 0,yb = 1 and rn = 0,1,2,3,4,5. 
In both figures the upper curves apply to modes confined near y ,  = 0 and the lower curves apply 
to modes confined near yb = 1 and m increases from left to right. Where curves cross there is a 
short interval in which c is complex. That interval and the value of c in it are determined by (6.6).  
(a) F = 5,  (b)  F = 7 .  

one solution of the form hl(y) = 1 + ay2 + 0(y3) with real, and another solution 
h2(y) = 0(y3). For the general solution h = c1 hl +c2h2 we have xhy = 2alcl I2y + 0(y2)  
so Im[&h,] = 0(y2). Therefore, Imb-2&h,,] is finite at y = 0, and its derivative is 
integrable. 

Now we use the asymptotic form of h(y1) for y1 large and negative and that of 
h(y2) for y2 large and positive in (A2). These asymptotic forms can be obtained by 
the usual WKB method, and we can write them as follows: 

9 Y-+--co h(y) = ~ ( 5 )  R 5W+ik/4Fe-i6/2 + 51/4-ik/4Feit/2 
~(1/4-&/4F~-it/2 

, y-++oo. (A3) 

When we use (A3) in (A2) with y1 + -a and y2 + +a, we obtain (3.11). 
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We can also use (A2) to treat reflection from a linear shear flow in the range 
-a < y < yb, with a wall at yb so that hy(yb) = 0. We use (A2) with y2 = yb and 
then the right-hand side vanishes. Then we let yl tend to --GO and use (A3) for h(y1). 
In this way, we get from (A2) the result 

IR(yb)I2 = 1 , c real. ('44) 

Thus for c real, which we assumed in writing (Al), we have shown that IR(yb)l = 1. 
This also proves that there are no poles of R on the real c axis, so there are no purely 
oscillatory modes. 

REFERENCES 

ABRAMOWITZ, M. & STEGUN, I. A. 1970 Handbook of Mathematical Functions. Dover. 
GRIFFITHS, R. W., KILLWORTH, P. D. & STERN, M. E. 1982 A geostrophic instability of ocean 

HAYASHI, Y.-Y. & YOUNG, W. R. 1987 Stable and unstable shear modes of rotating parallel flows in 

KNESSL, C. & KELLER, J. B. 1992 Stability of rotating shear flows in shallow water. J. Fluid Mech. 

LINDEN, R. S. 1988 Instability of plane parallel shear flow. PAGEOH 126, 103-121. 
SATOMURA, T. 1981a An investigation of shear instability in shallow water, J. Met .  SOC. Japan 59, 

SATOMURA, T. 1981b Supplementary note on shear instability in a shallow water. J .  Met .  Soc. Japan 

TAKEHIRO, S. I. & HAYASHI, Y.-Y. 1992 Overreflection and shear instability in a shallow water model. 

currents. J. Fluid Mech. 117, 343-377. 

shallow water. J. Fluid Mech. 184, 477-504. 

244, 605-614. 

148-1 67. 

59, 168-171. 

J. Fluid Mech. 236, 259-279. 




